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2-D Dynamic Cavity Expansion Model 
for Arbitrary Tractions 

Hyung Je Woo 

Abstract 

A two dimensional dynamic cavity expansion model is developed for the cylindrical 
cavity in an infinite medium subjected to an asymmetric constant velocity vector as a 
surface traction on the cavity wall. From the theory of elasticity, the equation of motion for 
an elemental volume of elastic material in plane strain and in polar coordinates is used. The 
analysis dealing with the exterior of the cavity consists of Hankel functions of the first 
kind. Two different methods, the Least square procedures and the Fourier transforms, are 
employed for the elastic problems. As a first technique, Least square procedures has been 
used to solve the unknown constants of the elastic solutions with the initial conditions on 
the cavity surface. The frequency equations can be solved, for example, for the first ten 
roots for each of the first eleven modes of vibration. Secondly, Fourier transforms are 
used to express all the solutions in the frequency domain and then the complete solutions 
can be obtained by inversing these Fourier transforms. Algorithms of inverse fast Fourier 
transforms (FFT) will be an efficient technique for this case. For each discrete time step, 
the equilibrium equations, along with the von-Mises yield condition, are solved for the 
solutions in the plastic region. The model can be also applied when arbitrary normal and 
tangential tractions acting on the surface of the circular cavity are prescribed. 

1.0 Elastic Region 

1.1 Wave Equations 

The equations of motion of an isotropic elastic solid in which body forces are 
absent, are: 

d2u    ,.       . dA 
p—T = (A+/0—- + /iV u (la) 

d v     ..       .dA      _2 /iuN 

d2w     ..       .dA      „2 /t . p—r = a + Ju) — + ßV2w, (lc) 
dt                     dz 

where the operator V  is written for (——? + —r + -r-y). 
dx2 + dy2 + dz2' 

Using the vector operators with the displacement u, we have another form of the vector 
displacement equation of motion as shown below: 



(A + 2//)V(V«u)-j[/VxVxu = pü (2) 

where the dilatation is A = V u. 

These equations of motion may be shown to correspond to the propagation of two types of 
waves through the medium 

d2A    ,„ .„...^ 
dt2 

d2w 

= a + 2,u)V2A (3a) 

= MV2w, (3b) 
r dt 

y 
where A is the dilatation propagating through the medium with the velocity [(A + 2fi)l p] 

y 
and w is the rotation about the axis propagating with the velocity (ß I p)n.   In vector 
forms, 

V2A = Ä/c/ (4a) 

V2w = w/c/. (4b) 

Hence the displacement equation of motion governs waves of the dilatation and the 
rotation. 

Poisson gave a class of particular solutions to Eqn. (2), based on the assumption 
that the displacement vector u is the gradient of a potential function, i.e., u = V ty. Later, 
Lame gave the general solution using both a scalar and vector potential, such as every 
displacement vector field of the form 

u = V(j) + Vxiff, (5) 

which satisfies Eqn. (2), provided <p and y are solutions of: 
V20 = #/c/ (6a) 

V2ij/=y//c2. (6b) 

When solutions are found to Eqn. (6) for <j) and xjf, displacement vector u can be obtained 
from Eqn. (5), and this is a solution to the displacement equations of motion. 

We particularly consider the 2-dimensional plane strain problem and use the 
cylindrical coordinates (r, 6,z). In the absence of the body force, two scalar wave equations 
are: 

V> = 0/c/ (7a) 

V>=y/7c2. (7b) 

In cylindrical coordinates, 



„2   d2   Id   Id2 

dr2     r dr    r2 dB2 

For harmonic waves of frequency ca, we write 

<p(r,e,t)=0(r,d)e-im (8a) 

\lf(r,d,t)=nr,e)e-im. (8b) 

Since the potentials must be periodic in 6 with period 2n, we seek solutions of the form: 

®(r,0) = R(r)einB (9a) 

W(r,d) = S(r)eM (9b) 

where n = integer. 

Substituting Eqn. (8) into Eqn. (7), we obtain two Bessel equations: 

R" + -/?' + (a2 -^-)i? = 0 (10a) 
r r 

S" + -S' + (ß2-^T)S = 0 (10b) 
r r 

where a = — and ß = — 
Cd 

The general solutions of these equations are the linear combinations of Bessel functions Jn 
andYn, e.g., 

R(r) = AJn(ccr) + BYn(ar) (11) 

where the Bessel functions of the first and second kind and order n are given by (when 
p = n = 0 or integer): 

Jix) = ftmMtl (12a) 

j (x).f <-irw2)^ (12b) 
^    m\(m-p)\ 

JJx)cos(pn:)-J Jx) ,„„ N 
Y(x) = -J^ —■ ^-^. (12c) 

sin(p7t) 

For brevity we employ the notation: 



(13) 

C?(z) = Jn(z) 

C?{z)=Yn{z) 

C?(z) = H?(z) = Jn(z) + iYn(z) 

C:\z) = H«\z) = Jn{z)-iYn{z) 

where H™(z) and #„(2>(z) are the Hankel functions of the first and second kind, 
respectively. The functions Jn and Yn are suitable for the solutions of the interior boundary 
value problems, while H? and Hf are suitable for the exterior boundary value problems. 

When a cylindrical cavity is subjected to dynamic surface tractions along the axis of 
the cylinder, the state of strain is planar. The general solution of an arbitrary cross sectional 
cavity problem in an infinite medium will have the Hankel function H^ for the cylinder 
function that is to be retained in the expressions of the Lame potentials. 

Figure 1. Cylindrical cavity with surface tractions. 

The use of Hm ensures that the Sommerfeld radiation condition is satisfied at infinity, so 
that H"\r)exp(-icot) represents waves advancing toward infinity from the surface of the 
cavity. Note that for waves converging to the cavity, one must employ Hf(r)exp(-icot). 
Thus for the problem of a cavity subjected to surface loads we use Cf = Hf. 



$(r,e) = *%AH«\ar)eM (14a) 

nr,e) = Y,BH?(ßr)e>"e (14b) 

Generally, we have 

n=0 

drer + rde*9 + dz 
V0 = -^fer+-^e9+^-ez, (15) 

Vx"=(%-^+^-^+'il<^)-i^»e-  (16) 
r ad       dz dz       or r dr r du 

and since u. = 0 and — = 0, 
dz 

The displacement field, aside from a factor exp(-icot), becomes (see Appendix A): 

", = ~ti^M3)(ccnkr) + WnkU?\ßnkr)]eM (18a) 
n=0k=l 

N     L 

r ' 
»e = -XS[tt*lf W) + ^'^r)]«" (18b) 

n=0 A=l 

(19) 

where 

Uf{ar) = aK^!, {oar) - nCf(ar) 

U?{ßr) = +nC?{ßr) 

V?(ar) = +nC?(ar) 

Vfißr) = -ßrC^ißr) + nCf{ßr). 

In deriving Eqn. (19) we have employed the recurrence relations for the cylinder functions 
Cn(z), where z is complex and n is any number (not necessarily an integer): 



zC'Sz) = nCn{z) - zCn+i(z) = -nCn{z) + zC^z). (20)_ 

The physical components of the stress tensor follow from Hooke's law, namely, 

6 r    dr    r de1    r dd    drd6 

Gz = AV20 

2 d2(j)     2 d<j)    1 d2y/   d2y/   1 dy/ 
Gre~^rdrd6    r2d0 + r2dd2     dr2     r dr 

<T   =0 

°ez=0 

E _, . vE 2v 
where u = and A = — ———— = -——- fi. 

*    2(1+v) (l+v)(l-2v)    l-2v 

Thus, aside from the exponential factor exp(-iütf), we have (Appendix B): 

°r = ^HiAnkT^(ankr) + iBnkTH\ßnkr)]e^ 
r     «=0 k-\ 

N     L 

r     n=0*=l 

r     n=0*=l 

^ = ^XX^2*« W) + BnkTg\ßnkr)]e 
'      n=0 *=1 

cr   =0 

^z = o 

where 

I*? (or) = (n2 +n--ß2r2)Cl1
i\ar)-arC^(ar) 

(21) 

(22) 



OTr) = +[-(«2 + n)C):\ßr) + nßrC]:\{ßr)} 

T(
2\\ar) = -(n2 + n - -/32r2 - aV)Cf (ar) + arC^iar) 

T%(ßr) = +[(n2 +n)C(-:\ßr)-nßrC(i\{ßr)} 

T^(ar) = ±[-(n2 + rc)Cf(ar) + "«<_! («r)] 

^()8r) = ~(n2 +n- |/?V )Cj?(ßr) + ßrC«\ (ßr) 

T»>{ar) = {a2r2--ß2r2)C];\ar). 

(23) 

1.2      Frequency Equations 

Boundary conditions for free vibrations are: 

°r = are ~ 0     on    r = a- 

We have 

0     n=0(fc=l 

(24) 

(25a) 

(25b) 

Setting Gr and <7re equal to zero at r = a, we obtain a set of two homogeneous equations 
The determinant of this set must vanish for the existence of a non-trivial solution for A 
and Bnk. Thus we have the frequency equation: 

nk 

A = 
T\\\anka)    iT${ßnka) 
iT™(ccnka)    T%{ßnka) 

= 0. 

where 

T\\\anka)T%(ßnka) + T™{anka)T${ßnka) = 0 

T$\aa) = (n2+n- -ß2a2)H^\aa) - ccaH^cca) 

O0fl) = -("2 + n)H^(ßa) + nßaH^ißa) 

T%\aa) = -{n2 + n)H^\ad) + naaH^_x{aa) 

(26) 

(27) 

(28) 



Tg\ßa) = -(n2+n-^ß2a2)Hil\ßa) + ßaH^(ßa). 

1.2.1.   Axially Symmetrie Case: n = 0 

We have: 

T\\\aa) = --ß2a2H^(aa) + aaH\x\aa) 

T™{ßa) = 0 

T%\aa) = 0 

and so, 

a = W 
27 -V) 

• 

If v = —, then k- 
4 

_ 1 
~3' 

i.e. ß = V3a 

Then the frequency equation becomes: 

[H«\a0ka)- --^—Hll\cc0ka)][H« 
3a0ka 

(V3a ota)- 
2 

V3aota 

(29) 

7^)0Sa) = |/JVfl<o
,)08a)-i5flflf

I)08a). 

Then the frequency equation becomes 

T«\anka)T%(ßnka) = 0. (30) 

For the given Poisson's ratio, v, frequency ratio k is fixed, i.e.: 

k = ^L = -^-= 
l~2v (31) 

ß2     l + 2p    2(1-v) 

(32) 

Eqn. (33) can be solved for the roots a0k, which, in turn, yield co0k, if a,  v and c, are 
known. 



1.2.2.   Nonaxially Symmetric Case:_n * 0 

The frequency equation becomes, if v = —, 

T\\\anka)T${^anka) + T%{anka)T${J$anka) = 0 

where, n=l,2,...,N and k = 0,1,2,...,K. 

We have K number of frequency, ank, for each n. 

(34) 

1.3      Least Square Method 

Unknown constants Ank and B„t can be determined from the initial conditions at Jnk 

t = 0. For the constant velocity initial conditions, 

«r(a,0,0) = Vr = V0 

ug(a,0,0) = Vg=0. 
(35) 

Figure 2.   Velocity initial condition. 

From Eqns. (18), radial and circumferential velocities are the real part of: 

TA = ^XXHA^t/P^r) - BnkCOnkU^(ßnkrW"ee'ia 
N     L 

' n=0k=\ 

N     L 

T»e = -SX[4*<ö*V?3W) - iBnkwnkV? \ßnkr)]einee-ia 

(36a) 

(36b) 



Then 

ReK = l-YLiK^^\ankr)sinne - BnkCOnkU?\ßnkr)cosn6] (37a) 
r n=0 k=\ 

ReV^-Sit^ffl^Ca^cosnö + B^^^Osin/iö].        (37b) 
n=0k=\ 

The problem is to minimize the functional: 

m   »i   

7 = 1 

The first terms in each bracket are the actual velocities from the elastic solutions and the 
second terms are the specified velocities from initial conditions. 

We have: 

£ = 0,-^ = 0 |L-0 

(39) 

dBn        dBn dB. it 

where  i = 0,1,2,...,N. 

The final matrix form of Eqn. (38) is obtained as follows by Least-Squares procedures. 
Matrix formulations are shown in Appendix C: 

PrP + QrQ   PrC + QrD 
CTP + DTQ   CTC + DTDJ 

Pr    Qr 

CT   DT 
(40) 

where 

A» #01 

A>2 #02 

A» 
= A 

B0l 

\x 
and Bni 

Ai2 Bn2 

A. Ai. 

= B 
(41) 

10 



1X1 X] 
= Sand 

X. .V 

= T 

P = 

A,oi    ■ "    Pi,Qi P\.U      • -     Pi.U      ■ ••     A.«l      ' ••     Pl.nl 

ft.Ol Pl.Ol ft.ll      • '•     PlM     • "     P2.nl      ■ P2,nl 

Q = 

Pm,01       '"      An,0/       PmM      '"      PmM      '"      Pm,n\       '"      Pm.nl. 

#1,01        ■"       #1,0/        #1,11        "■       #1,U       "■       #l,nl        '"       #1,«/ 

#2,01       ""       #2,0;        #2,11       '"      #2,U       ■"      #2,nl       "*       #2,«/ 

_#m,01       '"      #m,0/       #m,ll       "'      #m,l/       "'      #m,nl 

Matrix C and D have the same pattern as P and Q. 

The components of the matrix P, Q, C and D are: 

1 
Pj.ik=fo)ikUl3)(aikrj)smidj 

1j.ik=yO)ikVl3\ccikrj)cosiej 

chik=-jCOikU^\ßikrj)cosi6j 

dhik=-coikV^(ßikrj)smidr 

im.nl 

(42) 

(43a) 

(43b) 

(44a) 

(44b) 

(44c) 

(44d) 

1.4       Fourier Transform Method 

Another available method to solve the problems other than using the Least square 
procedure is the Fourier transform technique. Since Hankel functions are complex valued 
there is no point in insisting upon the real form of Fourier series. Thus we write for the 
Fourier transform of the displacement and stress fields: 

11 



ü, = ~ J^iAScoWfKar) - iBn{co)Vf\ßr)]e" 

(45) 

r~ 

and 

Gr = ^T StA(»)C(^) + Bn((0)T[l\ßr)V'e 

^ = ^ £[A„(0))r^(ar) + B.Co»^^)]«*' 

^    AIM 
/ n=-oo 

(46) 

where Uf\ar), .... , T®(/3r) are the same functions defined by Eqns. (19) and (23) with a 
positive sign only, in which Cf = tf„(1) is used for C<°. The conditions An(a>) and Bn(co) 
are to be determined from the boundary conditions. 

1.4.1.   Boundary Conditions 

Surface velocities are assumed to be given on the surface of the cavity r = a; i.e., 

ür(a,d,t) = Vr(e,t) (47a) 

üe(a,d,t) = Ve(e,t). (47b) 

Expanding the Fourier transforms of these into Fourier series we have: 

Vr(d,0)) = t,Tn(0))e"-e (48a) 
n=-~oo 

Ve{G,(0)=YJSn{G»eM (48b) 

where Tn{(0) and Sn{(0) are determined through: 

rr.m)   _LW(fl.»)l.„va m 
\s,(.<o)\   2n{\v,ie,co)\ 

where n = 0,+l,±2,... 

Since velocity becomes: 

12 



Vr{0,(o) = -XHWA (co)U?\aa)-icoBn(co)U?(ßa)]e" 
a~ 

1 
Ve(6,co) = -2>A (co)Vf\aa)- coBn(co)V?(ßa)]eM, 

the boundary conditions from Equation (47) now give: 

U?\ad)   Uf(ßa) 

Vf\aa)    V?(ßa) 
iTn{a>) 

(50) 

(51) 

The solution of this set is 

a. 
4(ö)) = (-)[-iT.(<»)V?C8a) - Sn(co)U?(ßa)]/det 

CO 

a. 
B„{G>) = (-)[Sn(co)Uf\aa) - iTn(co)Vf\aa)]l dci 

co 

(52a) 

(52b) 

where 

det = -Uf\aa)Vf\ßa) - V?(aa)U? (ßa) (53) 

1.4.2.   Displacements and Stresses 

Substituting the above An(co) and Bn(co) into Eqns. (45) and (46) we obtain the 
solutions as follows. Displacement fields are: 

1 
ür(r, 6,(0) = - JjiTScoV^cor) + Sn(co)u™(cor)]elne 

üe(r, 6,0)) = - ^[Tn(co)v^(cor) + iSn(co)v^(cor)]e'"e 

(54a) 

(54b) 

where 

u^(cor) = (—)[-V^(ßa)Uf\ar) - Vf](aa)U™(ßr)] /det 
(0 I 

a 
u?(cor) = (-)[-U?(ßa)U?\ar) + U?\aa)U? (j3r)]/det 

(O I 

v^(cor) = (—)[Vf(ßa)V™(ar)-V<3)(aa)Vf(ßr)] det 
CO 

(55) 

v™(cor) = (—)[-U?(ßa)V™(ar) - Uf\aa)Vf(ßr)] /det. 
CO I 

13 



Stress fields are: 

är(r,ö,0)) = ^X[/r„(ö))C(ö)r) + 5„(ö)K2,(ö)r)y"9 (56a) 
r 

äg(r, 0,a» = ^^[iTn(C0)s?((0r) + Sn{(0)s«\(ör)]eM (56b) 

äre{r, 0, (0) = ^-^[Tn(coK((Or) + iSn(co)t? ((Or)]eM (56c) 

where 

r 

C(cor) = {-)[-V?\ßa)T??{ar) - V? (aa)T$ (ßr)]/det 
00 l 

Cioar) = {-)[-U?{ßa)V»(ar) + U? (aa)T® (ßr)] /det 
00 I 

s?((Or) = (-)[-V?(ßa)F»(ccr) - V? (aa)T% (ßr)]/d&t 

sf\(or) = (-){-U°\ßa)T%{ar) + U? (aa)T% (ßr)]/det 
(O I 

<>(6)r) = (-)[V?(ßa)T%(ar) - V?\aa)T%{ßr)] /det 
(O I 

<2,(ö)r) = {-){-U?\ßa)T™{ar)-U?\aa)T%{ßr)] det. 
(O I 

Velocity Boundary Conditions 

When we have the boundary conditions as 

and 

then 

Tn{(o) = ^-\Voe-Md0 

(57) 

(i)     Vr(a,0,t) = Vr(0,t) = Vo     for     -0O<0<0O (58a) 
= 0     for elsewhere 

(ii)     Vg(a,0,t) = O, (58b) 

14 



= -^-sin(nö0) (59a) 
nit 

5a(ö)) = 0. (59b) 

We obtain the displacement and stress fields by substituting Tn(co) and S„(ft)) into Eqns. 
(54) and (56) as follows: 

r r£t      nit       a)U^(aa)V^(ßa) + V^(aa)U?(ßa) 
eine 

ü(rGoi) = -Y Vosinneo(
a
)-V?(ßa)V?(ar) + V?(aa)V?(ßr) 

9 r£t     nn     V U?{ad)Vf (ßa)+ Vf\oui)Uf\ßa)' 

(60) 

nB 

and 

ff (r ert^fj V°sinn0° ( a ) V?}(ß")Tl?(ttr) + V?(aa)Tl?(ßr) 
r r2 it       nit       a Uf\aa)Vf\ßa) + Vf\oui)Uf\ßa) 

ff fr fl «rt = 2£ f ■ V0sinnö0   q   V?(ßa)T%{ar) + Vf>(aa)7gQ8r) 
9 r2£l      nit       a'u?\cui)V?$a) + V?Xaa)U?$a) 

inB 

__ 2ß y, V0 sinnfl,, a , -V?(fig)!™(or) + y^oaQTffQft-) ,, 
(61) 

^.M)^!^^^) 
nn:       0)  U?>(aa)V?{ßa) + V?\aa)U?(ßa) 

e 

where U?\ar),....,T™(ßr) are the same functions defined by Eqns. (19) and (23) with 
positive signs only, in which Cn

(3) = i/n
(1) is used for Cf. Now the inverse of Fourier 

transforms of these equations gives the complete solutions. 

2.0      Elastic-Plastic Boundary 

The main problem is to determine the contour C that separates the plastic from the 
elastic region such that the displacements, as well as stresses, are continuous throughout 
the exterior of the cavity surface. If this elastic-plastic boundary C has been found, the 
problem divides into a pure plastic problem and a pure elastic one so that the elastic and 
plastic solutions can be obtained for each time step. 

We have three cases as we evaluate the Von-Mises yield condition along the each sector: 

3 
(Case 1) - (ar - Ge f + 6 <jre

2 < 2 Y2   : elastic 

3 
(Case 2) -(<jr - <je)

2 + 6ar6
2 =2Y2    : elastic-plastic boundary 

3 
(Case 3) -(ar - cre)

2 + 6or
2 > 2Y2    : plastic. 

15 



As we keep checking the yield condition exterior of the cavity surface, the elastic-plastic 
boundary has been found if the solutions at the node point become elastic. Then the 
stresses inside the boundary C are plastic and can be obtained by using the equilibrium 
equations and yield condition. 

elastic 
region 

Figure 3.   Elastic and plastic regions. 

3.0 Plastic Region 

3.1 Stresses 

We have the equilibrium equations, in which the body forces are neglected, for the 
plane strain case in the cylindrical coordinates as follows: 

for , Ifo, ( (Tr-ag_Q 

dr      r  dd r 

d<J.a     1 d(J0     2 
■ + + -a.a=0. 

dr      r d6     r 

(62a) 

(62b) 

At the elastic-plastic boundary, plastic solutions are the same as elastic solutions because of 
the continuity condition. Plastic solutions at the j = s node on contour r, now can be 
found with the stresses at the previous contour Ts+l from the elastic-plastic boundary up to 
the cavity wall. 

w^-Wj, { i (<^y+1-(<^y | «r,y.-(q,y. _0     (63a) 

Ar rM, A6 r,+1 

(^y-ccr,,).,, i (g.)^,-(g.y   2 
Ar r.„, A6 r,+1 

J 
(63b) 
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Then we have three components of stresses as follows: 

AT Ar 
Wj. = K),+. + T^K^)r.+1 -(<7jr.] + iWr* "K^       (64a) J J       r^AQ J J        rj+i j 

Ar 2Ar 
(<**)* =(^)r. +—7^K^e)r.+1 -(<y8)r.]+—(c^v.        (64b) 

Wf = Wf + Jf ** -4(o-re);,. (64c) 

3.2      Displacements 

In the plastic region, the displacements can be determined from the fact that £,. + ee 

is still given by Hooke's law, since the sum of the plastic part of er and e0 vanishes. 
Assuming small strains, the displacements equations become: 

and 

du    u    1 dv _ 1-2v, 
dr    r    rd6~2G — + - + -^7 = -T7^(crr + ^e) (65a) 

— + --r- = -£S-. (65b) 
<9r     r    r<?0      G 

Then we have: 

■{(^)/J+1-(^),+1} (66a) 
vM/1 v+,-v , v = i-2v 

4A- r  ,40 r„,        2G 

4A- r   4fl        r,tl // 
(66b) 

Now we have two components of displacements as follows: 

1 1 u      -U        u        !_2v 

1 1        v+i"V   V   (CT'flV' ,*^ —u   = — v    +  ' ' i J—. (67b) 
Ar   >     Ar   > r,^A9        r,+1 fi 

j J 

Acknowledgments 

This work was supported by the U.S. Army Research Laboratory (ARL) under contract 
DAAA21-93-C0101. 

17 



References 

[I] Woo, H. J. and Partom, Y., "Cavity Expansion Resistance Model for Arbitrary 
Cross Sections: Part I," Institute for Advanced Technology Report, IAT.R 0093, 
October 1995. 

[2] Woo, H. J., "Cavity Expansion Model for Arbitrary Cross Sections: Part II," 
Institute for Advanced Technology Report, September 1996. 

[3] Bishop, R. F., Hill, R., and Mott, N. F., "The Theory of Indentation and 
Hardness Tests," The Proceedings of the Physical Society, Vol. 57, Part 3, pp. 
147-159, 1945. 

[4]       Chakrabarty, J., Theory of Plasticity, McGraw-Hill Book Company, 1987. 

[5] Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, 
London, 1950. 

[6]       Lubliner, J., Plasticity Theory, Macmillan Publishing Company, 1990. 

[7] Partom, Y., "Static Cavity Expansion Model for Partially Confined Targets," 
Institute for Advanced Technology Report, IAT.R 0092, January 1996. 

[8] Partom, Y., "Efficiency of Lateral Self Confinement in Metal and Ceramic 
Targets," Institute for Advanced Technology Report, IAT.R 0019, April 1993. 

[9] Gazis, D. C, "Exact Analysis of the Plane-Strain Vibrations of Thick-Walled 
Hollow Cylinders," The Journal of the Acoustical Society of America, Vol. 30., 
No. 8., pp. 786-794, Aug, 1958. 

[10] Gazis, D. C, "Three-Dimensional Investigation of the Propagation of Waves in 
Hollow Circular Cylinders. I. Analytical Foundation, II. Numerical Results," The 
Journal of the Acoustical Society of America, Vol. 31., No. 5., pp. 568-578, May, 
1959. 

[II] Armenakas, A. E., Gazis, D. C. and Herrmann, G. H., Free Vibrations of 
Circular Cylindrical Shells, Pergamon Press Ltd., Headington Hill Hall, Oxford, 
1969. 

[12] Proakis, J. G. and Manolakis, D. G, Digital Signal Processing: Principles, 
Algorithms, and Applications, 2nd Ed., Macmillan Publishing Company, 1992. 

[13] Eringen, A. C, "Response of an Elastic Disk to Impact and Moving Loads," 
Quart. J. Appl. Mech., Vol. 8, pp. 385-393, 1955. 

[14] Eringen, A. C, "Elasto-Dynamic Problem Concerning the Spherical Cavity," 
Quart. J. Mech. Appl. Math., Vol. 10, pp. 257-270, 1957. 

[15] Liu, C. K. and Lee, T. N., "Dynamic Response of an Infinite Cylinder to 
Asymmetric Pressure on Its Lateral Surface," Development in Theoretical and 
Applied Mechanics, Vol. 3, pp. 447-464, Pergamon Press, 1967 

18 



[16] Forrestal, M. J. and Luk, V. K., "Dynamic Spherical Cavity-Expansion in a 
Compressible Elastic-Plastic Solid," J. Appl. Mech., Vol. 55, pp. 275-279, June, 
1988. 

[17] Forrestal, M. J., Tzou, D. Y., Askari, E. and Longcope, D. B., "Penetration into 
Ductile Metal Targets with Rigid Spherical Nose Rods," to appear Int. J. Impact 
Eng. 

[18] Nottrot, R. and Timman, R., "A General Method of Solving the Plane Elasto- 
Plastic Problems," Journal of Engineering Mathematics, Vol. 1, pp. 19-36, 1967. 

[19] Banichuk, N. V., "Calculating the Loading on an Elastoplastic Body," Mechanics 
of Solids, Vol. 9, pp. 117-124, 1969. 

[20] Annin, B. D. and Cherepanov, G. P., Elastic-Plastic Problems, ASME Press, 
New York, 1988. 

[21] Vodicka, V., "Elastic Waves in an Infinite Medium in the Case of Plane Strain," 
Appl. Sei. Res., Section A, Vol. 10, pp. 235-240, 1961. 

[22] Gazis, D. C. and Mindlin, R. D., "Extensional Vibrations and Waves in a Circular 
Disk and a Semi-Infinite Plate," J. Appl. Mech., Vol. 27, pp. 541-547, September, 
1960. 

[23] Miklowitz, J., "Plane-Stress Unloading Waves Emanating from a Suddenly 
Punched Hole in a Stretched Elastic Plate," J. Appl. Mech., pp. 165-171, March, 
1960. 

[24] Kinsler, L. E., Frey, A. R., Coppens, A. B. and Sanders, J. V., Fundamentals of 
Acoustics, John Wiley & Sons, 3rd Ed., 1982. 

[25] James, M. L., Smith, G. M. and Wolford, J. C, Applied Numerical Methods for 
Digital Computation With FORTRAN and CSMP, Harper & Row Publishers, 
Inc., 2nd Ed., 1977. 

[26] Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T., 
Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, 
1986. 

[27] Shaffer, B. W. and House, R. N., "Displacements in a Wide Curved Bar Subjected 
to Pure Elastic-Plastic Bending," J. Appl. Mech., Vol. 26, p. 447, 1957. 

[28] Shaffer, B. W. and House, R. N., "The Elastic-Plastic Stress Distribution Within a 
Wide Curved Bar Subjected to Pure Bending," J. Appl. Mech., Vol. 24, p. 305, 
1955. 

[29] Eason, G., "The Elastic-Plastic Bending of A Compressible Curved Bar," Appl. 
Sei. Res., A, Vol. 9, p. 53, 1960. 

[30] Forsythe, G. E. and Wasow, W. R., Finite Difference Methods for Partial 
Differential Equations, John Wiley & Sons, Inc., 1960. 

19 



[31] Alder, B., Fembach, S. and Rotenberg, M., Methods in Computational Physics: 
Volume 3 Fundamental Methods in Hydrodynamics, Academic Press Inc., 1964. 

[32] Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, 4th Ed., 
Dover Publications, New York, 1944. 

[33] Eringen, A.C., "Propagations of Elastic Waves Generated by Dynamic Loads on a 
Circular Cavity," J. Appl. Mech., Vol. 28: 218-222, 1961; see also, Erratum, J. 
AppL, Vol. 30, p. 149, 1963. 

[34]     Hart, J.F., et al., Computer Approximations, New York: Wiley, 1968. 

20 



Appendix A 

Displacement in terms of Ank and Bnk 

Aside from exp(-icot), since 

<D(r,ö) = £A„^1)(ary'"e 

«=o 

«=o 

we have: 

fr=tA-iH^ar)e in6 

n=0 

X Ank -[-nH^(ar) + ccrH«\(ar)]eine 

n=0 r 

^ = S^^l>(ary«e 

de n=0 

dr     tt      or 

= S^i[-»^1)(/5'-) + j8^-)
1(^)]e 

«=o       r 

de   ,!=0 

Then we have: 

dd>    1 dy/- 

r     dr     r dO 

ug = 

= ~f,{\k[-nHll)(ar) + arH^(ar)] + iBnknHll
l\ßr)}eine 

= -S[A„^,(3)(ar) + iBnkU?{ßr)]eM 
r
 n=0 

1 dd)    dy/ 
r dO     dr 

= -^{iA^nH^iar) + Bnk[nH«\ßr) - ßrH^ (ßr)]}eind 

= -f,[iAnkV{3\ar) + BnkV?\ßr)]ein9. 
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Appendix B 

Stresses in terms of Ank and Bnk 

Plane strain stress-strain relationship is: 

<rx = 2Gex + Mex + ey) 

ay=2Gey + Mex + ey) 

Oz=X{£x+£y)=V(Ox + Oy) 

axz=0 

<T„=0 

where shear modulus G and the quantity A are the Lame constants. 

In cylindrical coordinates, 

dur 
£ = 

dr 

1 dua     ur 
6     r dd      r 

£   =0 

~'r6     2rdd      dr      r 

£n=0. 

The stresses in terms of displacements ur and ue are: 

CTr=(2G+1A+1(i^+it) 
dr r dd      r 

r dd      r dr 

dr     r de      r 
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_,,1 du      dUf, 

^ = G(-rd6+ dr r 

cjn=0 

<7ft=0. 

Using the above equations, we can obtain the stresses in the cylindrical coordinates in 
terms of the unknown parameters \k and Bnk. Aside from exp(-iat), since: 

dlZ = 7l^[-0) + («2 + n - Ct2r2)H«\ar)} 

+iBnk[nßrH«\(ßr) - (n2 + n)H«\ßr)]}ein6 
dr     r~ 

^- = j^td{iAnk[narH^(ar)-(n2 +n)H^\ar)} 

+Bnk[ßrH^(ßr)-(n2+n-ß2r2)H«\ßr)]}eine 

% = TXiM-[»fflfli-i(a-)" »^"(ar)]" B^Ä^C/Jr)]}«4" 

/■?/./ 1     11L°°. 

the final stresses become: 

<yr=^SS{A,J(»2+»-^V)^)(o^)-^1_)
1(ar)] 

+/SBt[-(»
2+«)^,)03r) + nj8rH«)

I08r)]}e"fl 

+/B„t[(«2 + n)Ä<n
l)03r) - nßrH«\{ßr)]}eine 

^e=^rf,J,{UAnk[-(n
2+n)H^(ar) + narHll

l}l(ar)] 
n=0 k=l 

+Bnk H«2 +n- ±ß2r2 )H^\ßr) + ßrH^ (ßr)]}eine 

<yz=^Y^Ank{a
2r2-h2r2)H^{ar)e-s 

'      n=0 k=\ *- 

^ = o 

<Tfe=0. 
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Appendix C 

Matrix formulation for Least-Squares procedures 

Define: 

yo(r.,öy,A,,5,,)-yrj=/z, 

Vej(rpepA,,B,)-Vej=kr 

,T.   dF 
(I) = 0 case: 

V dAik        dAik 

Ä      dh,     ,   dk. s    n Y(h—M + ki—^) = 0 

(II) -J— = 0 case: 
dB.„ 

(l)For A,, 

Define: 

*{i£>+££>,_0 
<?ß, <?# 

Ä      <%. dk. 
Y(h—^ + ki—^) = 0 
ff   JdBik      >dB.J 

dhj 

dA, = PJJk(rjA^ 

dkj 

dAik 

= ^irr6j) 

Then, 

\\    K    h,    ...   hm}F + [k{    k2    k,    ...   km]Q = [0   0   0   ...   0] 

where, 
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p = 

A,01      ""     Pl.Ol      P\,\\      '"     P\,\l 

#2,01      '"      P2,0l      Pl.U      '"      P2.ll 

Pl.nl      ••'      P\.nl 

Pl,n\       '''      Pl.nl 

'm,0\ Pm.Ol      Pm,U       '"      PmM      '"      Pm.nl       '"      Pm.nl 

Q = 

#1,01     •• 

#2,01 

#1,0/        #1,11       ""       #1,1/ 

#2,0/       #2,11       ■"       #2,1/ 

#1,«1        '''       #1,«/ 

#2,nl       ' *'      #2,n/ 

#m,01       '"      #m,0/       #m,ll #m,l/       ""      #m,nl       '"      #m,n/ 

Also define: 

Then we have: 

Transposing gives: 

We now have: 

fo    Ä,   A,   ...   hm] = R 

[^    k2    k3    ...   KmJ = K. 

HP + KQ = [0   0   0   ...   0]. 

(HP + KQ)r=[0   0   0   ...   Of 

(HP)r + (KQ)r=[0   0   0   ...   Of. 

PrHT+QrKr 

hi r*,i "0" 

K K/ij 0 

A3 + Qr 
/C-j = 0 

A. K. 0 
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Since we have: 

we finally have: 

\vn] \VA |>1 r^i \VA ["*.] 
Vn v, K VH v* K 
V, — K3 

= K and Ve3 
— v? 

= K 

X. Ä, A. .V tfM! _ A. 

PT 

Vr2 Ve2 K2 
Ve2 

y? + Qr 

*> 
=pr K3 + QT V

e> 

X. Ve Ä. Ve 

(2) For 5, 

Define: 

Then, 

<% 

<?Ä 

dk 

dB, 
Jr = dj^re])- 

[h,    h,    h,    ...   hm]C + [kx    k2    k3    ...   km]D = [0   0   0 

Matrix C and D are same patern as P and Q. Then, 

HC + KD = [0   0   0   ...   0]. 

Transposing gives: 

(HC + KD)r=[0   0   0   ...   Of 

(HCf+CKDf^O   0   0   ...   Of. 

We now have: 

0]. 
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CrHr+DrKr = 

We finally have: 

hi \ki] "0" 

K k2 0 

h + Dr 
l\-i = 0 

K. .   m. 0 

K, \ K, \ 

\ v* \ VH 

v* + DT VH = CT v
? 

+ Dr VH 

K Vem K K 
If we define the column vector of unknown constants  Ajk  and  B.k  as  A  and  B, 
respectively, i.e., 

A» 
An 

A; 

Ai 

A2 

= A 
and 

B 01 

B 02 

B, o; 

Bnl 

B. nl 

B„t 

= B 

we have the velocity matrices expressed in terms of A and B as shown below: 
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A» ß01 

A>2 502 

Kl 
\ AM 3» 
v? 

= p 

A, 
+c 

Bnl /J 
A. 

Bn2 

A. 

= PA + CB 

and 

AH An 

A)2 502 

r*i 
v« A/ ß<M 

Ve, = Q 
A, 

+ D 

*.. 

kJ A2 

A. 

5„2 

A. 

= QA + DB 

Now let's also define the column vector of the specified velocities at each node point as: 

1X1 \\] 
v» Ve> 
v

? 
= Sand ^ 

Ä. Ä. 

= T. 

Then two final matrix forms are: 

(l)ForA,, : 

Pr(PA + CB) + Qr(QA + DB) = PrS + QTT 

(PrP + QrQ)A + (PrC + QrD)B = PrS + QrT 

(2) For Bik : 

Cr (PA + CB) + Dr(QA + DB) = CrS + DrT 
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(CrP + DrQ)A + (CrC + DrD)B = CrS + DrT 

For both equations, the matrix form becomes: 

PrP + QrQ   PrC + QrD 

CTP + DTQ   CTC + DTD 

Pr 

CT 
QT 

Dr 
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